
[Babu, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [58]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

A DATA GUIDED LEXI-SERACH APPROACH FOR TIME DEPENDENT

TRAVELLING SALEMSMAN PROBLEM
Dr.K.Sobhan Babu*

* Department of Mathematics, JNTUK-UCEV, Vizianagaram, A.P., INDIA.

Abstract
Abstract. A simple lexi-search algorithm that uses path representation method for the time dependent traveling

salesman problem TDTSP is proposed, to obtain exact optimal solution to the problem. Then a data-guided lexi

search algorithm is presented. First, the cost matrix of the problem is transposed depending on the variance of rows

and columns, and then the simple lexi-search algorithm is applied. It is shown that this minor preprocessing of the

data before the simple lexi-search algorithm is applied improves the computational time substantially. The efficiency

of our algorithms to the problem against two existing algorithms has been examined for some TSPLIB and random

instances of various sizes. The results show remarkably better performance of our algorithms, especially our data-

guided algorithm.

Keywords: Time Dependent Travelling Salesman Problem, Lexi-Search, Data Guided Lexi-Search, Pattern

 Recognition

 Introduction
The travelling salesman problem (TSP)

finds application in a variety of situations such as

automatic drilling of printed circuit boards and

threading of scan cells in testable VLSI circuit [1], X-

ray crystallography [2], and so forth. On the basis of

structure of the cost matrix, the TSPs are classified in

to two groups-symmetric (STSP) and asymmetric

(ATSP). The TSP is symmetric if 𝑐𝑖𝑗 = 𝑐𝑗𝑖 , ∀ 𝑖, 𝑗 and

asymmetric otherwise. The TSP is a NP-complete

combinatorial optimization problem [3]; and roughly

speaking it means, solving instances with a large

number of nodes is very difficult, if not impossible.

Some ATSP instances are more complex, in many

cases; ATSP instances are transformed into STSP

instances and subsequently solved using STSP

algorithms [4].

Since large size instances cannot easily be

solved optimally by an exact algorithm, a natural

question may arise that what maximum size instances

can be solved by an exact algorithm. Branch and cut

[5], branch and bound [6], lexi-search [7, 8] are well

known exact algorithms. In our investigation, we

apply lexi-search algorithm to obtain exact optimal

solution to the problem. The lexi-search algorithm

has been successfully applied to many combinatorial

optimization problems. Pandit and Srinivas [9]
showed that lexi-search algorithm is better than the

branch and bound algorithm. In lexi-search

algorithm, lower bound plays a vital role in reducing

search space, hence, reduces computational time.

Also, preprocessing of data, before the lexi-search

algorithm is applied, can reduce computational effort

substantially [9, 10].

In this paper, we first present a simple lexi-

search algorithm using path representation for a tour

for obtaining exact optimal solution to the TDTSP.

Then a data-guided lexi-search algorithm is proposed

by incorporating a data processing method to

improve further the efficiency of the algorithm.

Finally, a comparative study is carried out of our

algorithms against lexi-search algorithm of Pandit

and Srinivas [9], and results using integer

programming formulation of Sherali et al. [11] for

some TSPLIB and random instances of various sizes.

This paper is organized as follows: Section 2

presents literature review on the problem. Section 3

represents the mathematical formulation. A simple

lexi-search algorithm is developed in Section 4.

Section 5 presents a data-guided lexi-search

algorithm for the problem. Computational results for

the algorithms and conclusions has been presented in

Section 6.

http://www.ijesrt.com/

[Babu, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [59]

Literature Review
The methods that provide the exact optimal

solution to a problem are called exact methods. The

brute-force method of exhaustive search is

impractical even for moderate sized TSP instances.

There are few exact methods which find exact

optimal solution to the problem much more

efficiently than this method.

Dantzig et al. [12] solved instances of the

TSP by formulating as integer programming

approach and found an optimal solution to a 42-node

problem using linear programming (LP). Sarin et al.

[13] proposed a tighter formulation for the ATSP that

replaces subtour elimination constraints of Dantzig et

al. [12] and solved five benchmark instances using

branch and bound approach, however, as reported

[13], it failed to provide competitive performance for

the ATSP instances due to the size and structure of

the LP relaxations. A class of formulations for the

ATSP has been proposed by Sherali et al. [11], which

is proved to be tighter than the formulation based on

subtour elimination constraints of Sarin et al. [13].

Also, O¨ ncan et al. [14] made a survey of 24

different ATSP formulations and discussed the

strength of their LP relaxations and reported that the

formulation by Sherali et al. [11] gave the tightest

lower bounds.

Balas and Toth [15] solved the ATSP

instances using a branch and bound approach with a

bounding procedure based on the assignment

relaxation of the problem. Currently, many good

approximation algorithms based on branch and bound

approach have been developed for solving ATSP

instances [16–18].

Pandit [19] developed a lexi-search

algorithm for obtaining exact optimal solution to the

ATSP by using adjacency representation for a tour.

As reported, the algorithm shows large variations in

the context of computational times for different

instances of same size.

Murthy [20] proposed another scheme for the

“search” sequence of Pandit’s [19] algorithm, which

was expected to increase the computational

efficiency of the algorithm to considerable extent.

But as reported by Srinivas [21], the proposed

algorithm is likely to be efficient in case of highly

skewed cost distributions and does not seem to be

any better than the conventional branch and bound

algorithm. Pandit and Srinivas [9] again modified

lexisearch algorithm of Pandit [19], which is found to

be better than previous lexisearch algorithms and

branch and bound algorithm. But, as reported by

Ahmed [22], the algorithm shows large variations in

computational times. It is interesting to see that

randomly generated instances of same size seem to

fall into two distinct groups in the context of

computational time. One group requires significantly

less time than the average while another takes

significantly more time than the average, with a big

“gap” between the two groups. There are mainly two

ways of representing salesman’s path in the context

of lexi-search approach, namely, path representation

and adjacency representation. In adjacency

representation, permutation is generated in a

systematic lexical order, but all permutations do not

lead to feasible solution. Hence, a permutation is to

be tested for acceptability. In path representation,

explicit testing for cycle formation is avoided, and

hence there is a possibility to take less computational

time than the other method. In fact, Ahmed and

Pandit [23] used path representation for solving the

TSP with precedence constraints and found very

good results. In this paper also we are using path

representation method for a tour.

Mathematical Formulation

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒁 = ∑ ∑ ∑ 𝑪(𝒊, 𝒋, 𝒌) 𝑿(𝒊, 𝒋, 𝒌)

𝒏

𝒌=𝟏

𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

∑ ∑ 𝑋(𝑖, 𝑗, 𝑘)

𝑛

𝑗=1

𝑛

𝑖=1

= 𝛿𝑘 , 𝛿𝑘 = 0 𝑜𝑟 1; ∑ 𝛿𝑘

𝑛

𝑘=1

= 𝑚0

∑ ∑ 𝑋(𝑖, 𝑗, 𝑘)

𝑛

𝑘=1

𝑛

𝑗=1

= 𝛿𝑖 , 𝛿𝑖 = 0 𝑜𝑟 1; ∑ 𝛿𝑖

𝑛

𝑖=1

= 𝑚0

∑ ∑ 𝑋(𝑖, 𝑗, 𝑘)

𝑛

𝑘=1

𝑛

𝑖=1

= 𝛿𝑗 , 𝛿𝑗 = 0 𝑜𝑟 1; ∑ 𝛿𝑗

𝑛

𝑗=1

= 𝑚0

 Where 𝛿𝑖 =1 indicates that the salesman started from

city i, otherwise 0. 𝛿𝑗 =1 indicates that the salesman

visited from city j, otherwise 0. 𝛿𝑘 =1 indicates the

time/facility for the tour form city i to city j,

otherwise 0. In addition to the above constraints X

will be a feasible solution as follows. If it gives a tour

for the salesman who visits any of the m0 cities in m0

times/facilities with the condition that a point of time

in his tour he will not visit more than one pair of

cities. The problem is to find a tour for set of m0

cities out of n cities such that the total cost of the tour

of m0 cities is minimum.

http://www.ijesrt.com/

[Babu, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [60]

Lexi-Search Algorithm
In lexi-search approach, the set of all

possible solutions to a problem is arranged in

hierarchy like words in a dictionary, such that each

incomplete word represents the block of words with

this incomplete word as the leader of the block.

Bounds are computed for values of the objective

function over these blocks of words. These are

compared with “best solution value” found so far. If

no word in the block can be better than the “best

solution value” found so far, jump over the block to

the next one. However, if the bound indicates a

possibility of better solutions in the block, enter into

the subblock by concatenating the present leader with

appropriate letter and set a bound for the new (sub)

block so obtained [7, 8, 10].

Feasibility Criterion of a partial word
A feasibility criterion is developed, in order

to check the feasibility of a partial word Lk+1 = (a1, a2.

. .ak, ak+1) given that, Lk is a partial word. Let IR be

an array, IR (i) =1, i ε N represents that the salesman

is visiting some city from city i otherwise 0. IC be an

array where IC (i) =1, i ε N represents that the

salesman is coming to city i from some city,

otherwise 0. IT be an array where IT (i) =1, ii ε N

represents that the salesman at time i travels one pair

of cities. SW be an array where SW (i) is the city that

the salesman visiting from city i and SW (i) = 0

indicates that the salesman is not visiting any city

from city i. ISC be an array where ISC (i) is the

number of times the index i as a city or time involved

the word Lk. Then for a given partial word Lk = (a1,

a2. . .ak, ak) the values of the arrays IR,IC,IT,SW,ISC

are as follows.

IR(R(ai)) =1, i = 1,2,…,k and IR(j) = 0 for other

elements of j.

IC(C(ai))=1, i=1,2,…,k and IC(j) = 0 for other

elements of j.

IT(T(ai))=1, i=1,2,…,k and IT(j) = 0 for other

elements of j.

SW(R (ai) =C (ai), i=1, 2…, k and SW (j) for other

values of j.

ISC(R (ai)) = ISC(R (ai)) + 1

ISC(C (ai)) = ISC(C (ai)) + 1 i = 1, 2… k

ISC (T (ai)) = ISC (T (ai)) + 1

The recursive algorithm for checking the feasibility

of a partial word is as follows. In the algorithm first

we equate

IX=0.

TR = R (ap+1); TC = C (ap+1); TT = T (ap+1);

STEP 1: IX=0; TCX=TC; IDXT=IDX; GOTO

2.

STEP 2: IS (IR (TR) =1) IF YES GOTO 12; IF NO

GOTO 3.

STEP 3: IS(IC (TC) =1) IF YES GOTO 12; IF NO

GOTO 4.

STEP 4: IS (IT (TT) =1) IF YES GOTO 12; IF NO

GOTO 5.

STEP 5: IS (ISC (TR).EQ.0) IF YES IDXT =

IDXT + 1 GOTO 6; IF NO GOTO 6.

STEP 6: IS (ISC (TC).EQ.0) IF YES IDXT =

IDXT + 1 GOTO 7; IF NO GOTO 7.

STEP 7: IS (ISC (TT).EQ.0) IF YES IDXT =

IDXT + 1 GOTO 8; IF NO GOTO 8.

STEP 8: IS (IDXT.GT.M) IF YES GOTO

12; IF NO GOTO 9.

STEP 9: IS (SW (TCX) =0) IF YES IX=1

GOTO 12; IF NO IK=SW (TCX) GOTO 10.

STEP 10: IS (IK=TR) IF YES GOTO

11; IF NO TCX=IK GOTO 9.

STEP 11: IS (I=N) IF YES IX=1

GOTO 12; GOTO 12.

STEP 12: STOP.

At the end if IX=1 then the partial word is feasible,

other wise it is infeasible. This recursive algorithm is

used as a subroutine in the Lexi-Search

algorithm(vide 4.6), to check the feasibility of a

http://www.ijesrt.com/

[Babu, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [61]

partial word. Search starts with a very large value (=

9999999) as the trail value of VT. If the value of a

feasible word is known, it can as well be taken as the

value of VT. During the search VT is improved (in

fact, it gets decreased). At the end of the search, the

current value VT gives value of the optimal feasible

word. A partial word Lk, is constructed as Lk = Lk-

1*(ak). (Where * indicates concatenation) and V (Lk)

and LB (Lk) are calculated. Then two situations arise:

one for branching and the other for continuing search.

[1].LB(Lk) ≥ VT: if it is the case, we reject the partial

word, i.e., the block of words with Lk as leader is

rejected for not having an optimal word and we also

reject all the partial words of order K the succeed Lk.

[2].LB (Lk) < VT: if it is so, we check whether Lk is

feasible. If it is feasible, we proceed to consider a

partial word a order which represents a sub-block of

words represented by Lk. If Lk is not feasible, we

consider the next partial word of order k, by

considering another letter in kth position which

succeeds ak. If all the partial words of order k are

exhausted, then we consider the next partial word of

order (k-1).

Data Guided Lexi-Search Algorithm
Introducing a preprocessing technique as

done in lexi search algorithms of Pandit and Srinivas

and Ahmed are not worthwhile for our algorithm. Of

course, exchanging row with corresponding column

in the cost matrix depending on their variances would

have been worthwhile, but keeping record of track of

the nodes would be more expensive. It is then

observed that for some instances, solving transposed

cost matrix takes lesser time with a same tour value

than the original matrix. Now, the question is that

under what condition the transposed matrix is to be

considered instead of the given matrix. After

studying many statistics of the cost matrix we come

to the conclusion that when the variances (standard

deviations) of rows are more than those of columns,

our lexi search algorithm takes less computational

time. Hence, we introduce two preprocessing of the

modified cost matrix before applying our simple lexi

search algorithm as follows:

Let αi, βi be the standard deviations of ith row and

jthcolumn of the modified cost matrix C, for all i =

1,2, …,n.

 Process 1: count how many time (αi < βi),

for all 1 ≤ i ≤ n. If this count is greater than n, then

the transposed modified cost matrix is

considered.

 Process 2: Let α = 


n

i

i

1

 and β =


n

j

j

1

 .

Next, we check whether (α < β). If yes, then the

transposed

modified cost matrix is considered.

The above preprocessing is incorporated in data-

guided lexi search algorithm. The data-guided lexi

search algorithm replaces the steps 1 and 12 of the

algorithm described in feasibility criterion of Lexi-

search algorithm.

Step 0: Remove “bias” of the given cost matrix.

Preprocess the modified cost matrix as described

above and construct the “alphabet table” based on the

modified cost matrix. Set “best solution value” as

large as possible. Since “node 1” is the starting node,

we start our computation from 1st row of the

“alphabet table”. Initialize “partial tour value” = 0, r

= 1 and go to Step 2.

Step 11. Current word gives the optimal tour

sequence with respect to the cost matrix used for

solution. If the transposed matrix is used for solution,

then take reverse of the tour sequence as the optimal

tour sequence with respect to the original cost matrix

and then stop.

Computational results & Conclusion
The lexi-search algorithm (LSA) and data-

guided lexi-search algorithm (DGLSA) have been

encoded in C on a Pentium IV personal computer

with speed 3GHz and 448 MB RAM under MS

windows XP operating system. We have selected

TSPLIB [22] instances of size from 17 to 55. We

report the solutions that are obtained within three

hours on the machine as well as total computational

times (TotTime) in seconds. We also report

percentage of error of the solutions obtained by the

algorithms. The percentage of error is given by the

formula Error(%) = (BestSol-

http://www.ijesrt.com/

[Babu, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [62]

OptSol)/OptSol×100%, where BestSol denotes the

best/optimal solution obtained by the algorithms and

OptSol denotes the optimal solution reported in

TSPLIB.

Table 1: Results by data-guided lexi-search algorithm

using Process 1 and Process 2

Insta

nce

Opt

Sol

Bes

tSol

Process 1 Bes

tSol

Process 2

Err

or

(%

)

TotT

ime

Err

or

(%

)

TotT

ime

br17 39 39 0.0

0

75.2

3

39 0.0

0

75.2

3

ftv3

3

128

6

128

6

0.0

0

644.

22

128

6

0.0

0

611.

26

ftv3

5

147

3

147

3

0.0

0

354.

12

147

3

0.0

0

345.

88

ftv3

8

153

0

154

8

0.0

0

1649

.29

154

8

0.0

0

1649

.29

p43 562

0

563

1

0.1

4

1356

6.10

563

1

0.1

4

1286

6.10

ftv4

4

161

3

161

3

0.0

0

1132

3.24

161

3

0.0

0

1289

9.28

ftv4

7

177

6

181

1

2.1

3

1356

6.28

181

1

2.1

3

1286

6.10

ry48

p

144

20

153

44

10.

21

1356

6.28

153

44

10.

21

1322

2.11

ftv5

3

690

5

792

5

15.

11

1322

8.01

792

5

15.

11

1322

2.01

ftv5

5

160

8

171

0

5.3

5

1356

6.28

171

0

5.3

5

1356

1.10

Ave

rage

 3.2

9

8153

.90

 3.2

9

8131

.83

Table 1 presents the comparative study of DGLSA

using two different preprocessing methods, Process 1

and Process 2. It is seen from the table that the

solutions obtained by both methods are same. Hence,

we consider DGLSA using Process 2 for comparison

with other algorithms.

Table 2 shows that, DGLSA takes time that is less

than or equal to the time taken by LSA for all

instances. The table shows that, on average

computational time, LSA, and DGLSA find a

solution within at most 39%, and 30% of the total

computational time, respectively. That is, LSA, and

DGLSA spend at least 61%, and 70% of total

computational time on proving the solutions.

Therefore, for these TSPLIB instances, LSA spends a

relatively large amount of time on finding solution

compared to DGLSA.

Table 2: Results by different algorithms on ten

TSPLIB instances

Insta

nce

Opt

Sol

LSA DGLSA

Bes

tSol

Err

or

(%

)

TotT

ime

Bes

tSol

Err

or

(%

)

TotT

ime

br17 39 39 0.0

0

75.2

3

39 0.0

0

75.2

3

ftv3

3

128

6

128

6

0.1

2

611.

24

128

6

0.0

0

611.

26

ftv3

5

147

3

147

3

1.0

2

345.

12

147

3

0.0

0

345.

88

ftv3

8

153

0

154

8

1.2

3

1649

.29

154

8

0.0

0

1649

.29

p43 562

0

563

1

1.3

5

1356

6.10

563

1

0.1

4

1286

6.10

ftv4

4

161

3

161

3

1.3

6

1132

3.24

161

3

0.0

0

1289

9.28

ftv4

7

177

6

181

1

3.3

7

1356

6.28

181

1

2.1

3

1286

6.10

ry48

p

144

20

153

44

10.

21

1356

6.28

153

44

10.

21

1322

2.11

http://www.ijesrt.com/

[Babu, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [63]

ftv5

3

690

5

792

5

15.

11

1322

8.01

792

5

15.

11

1322

2.01

ftv5

5

160

8

171

0

5.3

5

1356

6.28

171

0

5.3

5

1356

1.10

Ave

rage

 3.9

1

8153

.90

 3.2

9

8131

.83

On the other hand, DGLSA requires largest amount

of time on proving the solutions, and hence, a large

number of sub problems are thrown. On the basis of

computational time also, LSA is found to be better,

and DGLSA is found to be the best one. There is

good improvement of DGLSA over LSA for the

instances in terms of solution quality and

computational time. So, our goal is achieved very

well. We presented simple and data-guided lexi-

search algorithms that use path representation method

for representing a tour for the benchmark asymmetric

traveling salesman problem to obtain exact optimal

solution to the problem. It is found that our data-

guided algorithm is very effective for these instances.

For random instances also, the data-guided lexi-

search algorithm is found to be effective, and the

algorithm is not much sensitive to the changes in the

range of the uniform distribution.

Though we have proposed a data-guided module of

the lexi-search algorithm, still for some instances it

takes more times than the simple lexi-search

algorithm, and it is applicable only for the

asymmetric instances. So a closer look at the

structure of the instances and then developing a more

sophisticated data-guided module may apply on

symmetric instances, and may further reduce the

computational time and provide better solutions for

large instances. Another direction of the research is to

propose a better lower bound technique which may

reduce the solution space to be searched, and hence

reduce the computational time.

Acknowledgements
The author whishes to acknowledge

Prof.S.N.N Pandit (late) and acknowledge Prof.

Sundara Murthy.M for their continuous help and

valuble suggenstions and moral support to

strengthern of the paper.The author is also thankful to

the anonymous honorable reviewer for his valuable

comments and suggestions.

References
[1] C.P.Ravi kumar, “Solving Large-scale travelling

salesperson problems on parallel machines”,

Microprocessors and Microsystems, vol. 16, no. 3,

pp. 149-158, 1992.

[2] R.G. Bland and D.F.Shallcross, “Large traveling

salesman problems arising from experiments in x-ray

crystallography: a preliminary report on

computation”, Operations Research Letters, vol. 8,

no.3, pp. 125-128, 1989.

[3] C. H. Papadimitriou and K. Steglitz,

Combinatorial Optimization: Algorithms and

Complexity, Prentice Hall of India Private Limited,

New Delhi, India, 1997.

[4] R. Jonker and T. Volgenant, “Transforming

asymmetric into symmetric traveling salesman

problems,” Operations Research Letter 2, vol. 2, pp.

161–163, 1983.

[5] D. Naddef, “Polyhedral theory and branch-and-

cut-algorithms for the symmetric TSP,” in The

Traveling Salesman Problem and Its Variations, G.

Gutin and A. P. Punnen, Eds., vol. 12 of

Computational Optimization, pp. 29–116, Kluwer

Academic Publishers, Dodrecht, The Netherlands,

2002.

[6] M. Fischetti, A. Lodi, and P. Toth, “Exact

methods for the asymmetric traveling salesman

problem,” in The Traveling Salesman Problem and

Its Variations, G. Gutin and A. P. Punnen, Eds., vol.

12 of Computational Optimization, pp. 169–205,

Kluwer Academic Publishers, Dodrecht, The

Netherlands, 2002.

[7] Z. H. Ahmed, “A lexisearch algorithm for the

bottleneck traveling salesman problem,”

International Journal of Computer Science and

Security, vol. 3, no. 6, pp. 569–577, 2010.

[8] S. N. N. Pandit, “The loading problem,”

Operations Research, vol. 10, no. 5, pp. 639–646,

1962.

[9] S. N. N. Pandit and K. Srinivas, “A lexisearch

algorithm for the traveling salesman problem,” in

Proceedings of the IEEE International Joint

Conference on Neural Networks, vol. 3, pp. 2521–

2527, November 1991.

[10] Sobhan Babu.K., Chandra Kala.K, Purushotam.

S, , Sundara Murthy.M., “A New Approach for

http://www.ijesrt.com/

[Babu, 4(4): April, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [64]

variant multi Assignment Problem” International

Jouranal on Computer Science and Engineering,

Vol.2, No.5, 2010, pp.1634-1641.

[11] H. D. Sherali, S. C. Sarin, and Pei-F Tsai, “A

class of lifted path and flow-based formulations for

the asymmetric traveling salesman problem with and

without precedence constraints,” Discrete

Optimization, vol. 3, no. 1, pp. 20–32, 2006.

[12] G. B. Dantzig, D. R. Fulkerson, and S. M.

Johnson, “Solution of a large-scale traveling-

salesman problem,” Operational Research Society

Journal, vol. 2, pp. 393–410, 1954.

[13] S. C. Sarin, H. D. Sherali, and A. Bhootra, “New

tighter polynomial length formulations for the

asymmetric traveling salesman problem with and

without precedence constraints,” Operations

Research Letters, vol. 33, no. 1, pp. 62–70, 2005.

[14] T. O¨ ncan, I¨. K. Altinel, and G. Laporte, “A

comparative analysis of several asymmetric traveling

salesman problem formulations,” Computers &

Operations Research, vol. 36, no. 3, pp. 637–654,

2009.

[15] E. Balas and P. Toth, “Branch and bound

methods,” in The Traveling Salesman Problem, E. L.

Lawler, J. K. Lenstra, A. H .G. Rinnooy Kan et al.,

Eds., Wiley Series in Discrete Mathematics &

Optimization, pp. 361–401, JohnWiley & Sons,

Chichester, UK, 1985.

[16] G. Carpaneto, M. Dell’Amico, and P. Toth,

“Exact solution of large-scale, asymmetric traveling

salesman problems,” Association for Computing

Machinery. Transactions on Mathematical Software,

vol. 21, no. 4, pp. 394–409, 1995.

[17] S. N. N. Pandit, “An Intelligent approach to

travelling salesman problem,” Symposium in

Operations Research, Khragpur: Indian Institute of

Technology, 1964.

[18] Z. H. Ahmed, “A Data-Guided Lexisearch

Algorithm for the Asymmetric Traveling Salesman

Problem,” Mathematical Problems in Engineering,

Vol.2011, doi:10.1155/2011/750968.

[19] Z. H. Ahmed and S. N. N. Pandit, “The

travelling salesman problem with precedence

constraints,” Opsearch, vol. 38, no. 3, pp. 299–318,

2001.

[20] M. S. Murthy, Some Combinatorial Search

Problems (A Pattern Recognition Approach), Ph.D.

thesis, Kakatiya University, Warangal, India, 1979.

[21] K. Srinivas, Data Guided Algorithms in

Optimization and Pattern Recognition, Ph.D. thesis,

University Of Hyderabad, Hyderabad, India, 1989

[22]TSPLIB,http://www2.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/.

[23] D. S. Johnson, Machine comparison site,

http://public.research.att.com/~dsj/chtsp/speeds.html.

http://www.ijesrt.com/
http://www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

