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Abstract 
Abstract. A simple lexi-search algorithm that uses path representation method for the time dependent traveling 

salesman problem TDTSP is proposed, to obtain exact optimal solution to the problem. Then a data-guided lexi 

search algorithm is presented. First, the cost matrix of the problem is transposed depending on the variance of rows 

and columns, and then the simple lexi-search algorithm is applied. It is shown that this minor preprocessing of the 

data before the simple lexi-search algorithm is applied improves the computational time substantially. The efficiency 

of our algorithms to the problem against two existing algorithms has been examined for some TSPLIB and random 

instances of various sizes. The results show remarkably better performance of our algorithms, especially our data-

guided algorithm.  
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     Introduction 
The travelling salesman problem (TSP) 

finds application in a variety of situations such as 

automatic drilling of printed circuit boards and 

threading of scan cells in testable VLSI circuit [1], X-

ray crystallography [2], and so forth. On the basis of 

structure of the cost matrix, the TSPs are classified in 

to two groups-symmetric (STSP) and asymmetric 

(ATSP). The TSP is symmetric if 𝑐𝑖𝑗 = 𝑐𝑗𝑖 , ∀ 𝑖, 𝑗 and 

asymmetric otherwise. The TSP is a NP-complete 

combinatorial optimization problem [3]; and roughly 

speaking it means, solving instances with a large 

number of nodes is very difficult, if not impossible. 

Some ATSP instances are more complex, in many 

cases; ATSP instances are transformed into STSP 

instances and subsequently solved using STSP 

algorithms [4].  

 

Since large size instances cannot easily be 

solved optimally by an exact algorithm, a natural 

question may arise that what maximum size instances 

can be solved by an exact algorithm. Branch and cut 

[5], branch and bound [6], lexi-search [7, 8] are well 

known exact algorithms. In our investigation, we 

apply lexi-search algorithm to obtain exact optimal 

solution to the problem. The lexi-search algorithm 

has been successfully applied to many combinatorial 

optimization problems. Pandit and Srinivas [9] 
showed that lexi-search algorithm is better than the 

branch and bound algorithm. In lexi-search 

algorithm, lower bound plays a vital role in reducing 

search space, hence, reduces computational time. 

Also, preprocessing of data, before the lexi-search 

algorithm is applied, can reduce computational effort 

substantially [9, 10]. 

 

In this paper, we first present a simple lexi-

search algorithm using path representation for a tour 

for obtaining exact optimal solution to the TDTSP. 

Then a data-guided lexi-search algorithm is proposed 

by incorporating a data processing method to 

improve further the efficiency of the algorithm. 

Finally, a comparative study is carried out of our 

algorithms against lexi-search algorithm of Pandit 

and Srinivas [9], and results using integer 

programming formulation of Sherali et al. [11] for 

some TSPLIB and random instances of various sizes.  

 

This paper is organized as follows: Section 2 

presents literature review on the problem. Section 3 

represents the mathematical formulation. A simple 

lexi-search algorithm is developed in Section 4. 

Section 5 presents a data-guided lexi-search 

algorithm for the problem. Computational results for 

the algorithms and conclusions has been  presented in 

Section 6.   
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Literature Review 
The methods that provide the exact optimal 

solution to a problem are called exact methods. The 

brute-force method of exhaustive search is 

impractical even for moderate sized TSP instances. 

There are few exact methods which find exact 

optimal solution to the problem much more 

efficiently than this method.  

Dantzig et al. [12] solved instances of the 

TSP by formulating as integer programming 

approach and found an optimal solution to a 42-node 

problem using linear programming (LP). Sarin et al. 

[13] proposed a tighter formulation for the ATSP that 

replaces subtour elimination constraints of Dantzig et 

al. [12] and solved five benchmark instances using 

branch and bound approach, however, as reported 

[13], it failed to provide competitive performance for 

the ATSP instances due to the size and structure of 

the LP relaxations. A class of formulations for the 

ATSP has been proposed by Sherali et al. [11], which 

is proved to be tighter than the formulation based on 

subtour elimination constraints of Sarin et al. [13]. 

Also, O¨ ncan et al. [14] made a survey of 24 

different ATSP formulations and discussed the 

strength of their LP relaxations and reported that the 

formulation by Sherali et al. [11] gave the tightest 

lower bounds.  

Balas and Toth [15] solved the ATSP 

instances using a branch and bound approach with a 

bounding procedure based on the assignment 

relaxation of the problem. Currently, many good 

approximation algorithms based on branch and bound 

approach have been developed for solving ATSP 

instances [16–18].  

Pandit [19] developed a lexi-search 

algorithm for obtaining exact optimal solution to the 

ATSP by using adjacency representation for a tour. 

As reported, the algorithm shows large variations in 

the context of computational times for different 

instances of same size. 

Murthy [20] proposed another scheme for the 

“search” sequence of Pandit’s [19] algorithm, which 

was expected to increase the computational 

efficiency of the algorithm to considerable extent. 

But as reported by Srinivas [21], the proposed 

algorithm is likely to be efficient in case of highly 

skewed cost distributions and does not seem to be 

any better than the conventional branch and bound 

algorithm. Pandit and Srinivas [9] again modified 

lexisearch algorithm of Pandit [19], which is found to 

be better than previous lexisearch algorithms and 

branch and bound algorithm. But, as reported by 

Ahmed [22], the algorithm shows large variations in 

computational times. It is interesting to see that 

randomly generated instances of same size seem to 

fall into two distinct groups in the context of 

computational time. One group requires significantly 

less time than the average while another takes 

significantly more time than the average, with a big 

“gap” between the two groups. There are mainly two 

ways of representing salesman’s path in the context 

of lexi-search approach, namely, path representation 

and adjacency representation. In adjacency 

representation, permutation is generated in a 

systematic lexical order, but all permutations do not 

lead to feasible solution. Hence, a permutation is to 

be tested for acceptability. In path representation, 

explicit testing for cycle formation is avoided, and 

hence there is a possibility to take less computational 

time than the other method. In fact, Ahmed and 

Pandit [23] used path representation for solving the 

TSP with precedence constraints and found very 

good results. In this paper also we are using path 

representation method for a tour. 

 

Mathematical Formulation 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒁 = ∑ ∑ ∑ 𝑪(𝒊, 𝒋, 𝒌)  𝑿(𝒊, 𝒋, 𝒌)

𝒏

𝒌=𝟏

𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

 

∑ ∑ 𝑋(𝑖, 𝑗, 𝑘)

𝑛

𝑗=1

𝑛

𝑖=1

=  𝛿𝑘 ,       𝛿𝑘 = 0 𝑜𝑟 1;  ∑ 𝛿𝑘

𝑛

𝑘=1

=  𝑚0 
 

∑ ∑ 𝑋(𝑖, 𝑗, 𝑘)

𝑛

𝑘=1

𝑛

𝑗=1

=  𝛿𝑖 ,       𝛿𝑖 = 0 𝑜𝑟 1;  ∑ 𝛿𝑖

𝑛

𝑖=1

=  𝑚0 

 

∑ ∑ 𝑋(𝑖, 𝑗, 𝑘)

𝑛

𝑘=1

𝑛

𝑖=1

=  𝛿𝑗 ,       𝛿𝑗 = 0 𝑜𝑟 1;  ∑ 𝛿𝑗

𝑛

𝑗=1

=  𝑚0 

 

 Where 𝛿𝑖 =1 indicates that the salesman started from 

city i, otherwise 0. 𝛿𝑗 =1 indicates that the salesman 

visited from city j, otherwise 0. 𝛿𝑘 =1 indicates the 

time/facility for the tour form city i to city j, 

otherwise 0. In addition to the above constraints X 

will be a feasible solution as follows. If it gives a tour 

for the salesman who visits any of the m0 cities in m0 

times/facilities with the condition that a point of time 

in his tour he will not visit more than one pair of 

cities. The problem is to find a tour for set of m0 

cities out of n cities such that the total cost of the tour 

of m0 cities is minimum. 
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Lexi-Search Algorithm 
In lexi-search approach, the set of all 

possible solutions to a problem is arranged in 

hierarchy like words in a dictionary, such that each 

incomplete word represents the block of words with 

this incomplete word as the leader of the block. 

Bounds are computed for values of the objective 

function over these blocks of words. These are 

compared with “best solution value” found so far. If 

no word in the block can be better than the “best 

solution value” found so far, jump over the block to 

the next one. However, if the bound indicates a 

possibility of better solutions in the block, enter into 

the subblock by concatenating the present leader with 

appropriate letter and set a bound for the new (sub) 

block so obtained [7, 8, 10]. 

 

Feasibility Criterion of a partial word 
A feasibility criterion is developed, in order 

to check the feasibility of a partial word Lk+1 = (a1, a2. 

. .ak, ak+1) given that, Lk is a partial word. Let IR be 

an array, IR (i) =1, i ε N represents that the salesman 

is visiting some city from city i otherwise 0. IC be an 

array where IC (i) =1, i ε N represents that the 

salesman is coming to city i from some city, 

otherwise 0. IT be an array where IT (i) =1, ii ε N 

represents that the salesman at time i travels one pair 

of cities. SW be an array where SW (i) is the city that 

the salesman visiting from city i and SW (i) = 0 

indicates that the salesman is not visiting any city 

from city i. ISC be an array where ISC (i) is the 

number of times the index i as a city or time involved 

the word Lk. Then for a given partial word Lk = (a1, 

a2. . .ak, ak) the values of the arrays IR,IC,IT,SW,ISC 

are as follows. 

IR(R(ai)) =1, i = 1,2,…,k and IR(j) = 0 for other 

elements of j. 

IC(C(ai))=1,  i=1,2,…,k and IC(j) = 0 for other 

elements of j. 

IT(T(ai))=1,  i=1,2,…,k and IT(j) = 0 for other 

elements of j. 

SW(R (ai) =C (ai), i=1, 2…, k and SW (j) for other 

values of j. 

ISC(R (ai)) = ISC(R (ai)) + 1 

ISC(C (ai)) = ISC(C (ai)) + 1         i = 1, 2… k 

ISC (T (ai)) = ISC (T (ai)) + 1 

The recursive algorithm for checking the feasibility 

of a partial word is as follows. In the algorithm first 

we equate  

IX=0. 

TR = R (ap+1); TC = C (ap+1); TT = T (ap+1);  

STEP 1: IX=0; TCX=TC; IDXT=IDX; GOTO 

2. 

STEP 2: IS (IR (TR) =1) IF YES GOTO 12; IF NO 

GOTO 3. 

STEP 3: IS(IC (TC) =1) IF YES GOTO 12; IF NO 

GOTO 4. 

STEP 4: IS (IT (TT) =1) IF YES GOTO 12; IF NO 

GOTO 5. 

STEP 5: IS (ISC (TR).EQ.0) IF YES IDXT = 

IDXT + 1 GOTO 6; IF NO GOTO 6. 

STEP 6: IS (ISC (TC).EQ.0) IF YES IDXT = 

IDXT + 1 GOTO 7; IF NO GOTO 7. 

STEP 7: IS (ISC (TT).EQ.0) IF YES IDXT = 

IDXT + 1 GOTO 8; IF NO GOTO 8. 

STEP 8: IS (IDXT.GT.M)  IF YES GOTO 

12; IF NO GOTO 9. 

STEP 9: IS (SW (TCX) =0) IF YES IX=1 

GOTO 12; IF NO IK=SW (TCX) GOTO 10. 

STEP 10: IS (IK=TR)  IF YES GOTO 

11; IF NO TCX=IK GOTO 9. 

STEP 11: IS (I=N)  IF YES IX=1 

GOTO 12; GOTO 12. 

STEP 12:  STOP.  

At the end if IX=1 then the partial word is feasible, 

other wise it is infeasible. This recursive algorithm is 

used as a subroutine in the Lexi-Search 

algorithm(vide 4.6), to check the feasibility of a 
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partial word. Search starts with a very large value (= 

9999999) as the trail value of VT. If the value of a 

feasible word is known, it can as well be taken as the 

value of VT. During the search VT is improved (in 

fact, it gets decreased). At the end of the search, the 

current value VT gives value of the optimal feasible 

word. A partial word Lk, is constructed as Lk = Lk-

1*(ak). (Where * indicates concatenation) and V (Lk) 

and LB (Lk) are calculated. Then two situations arise: 

one for branching and the other for continuing search. 

[1].LB(Lk) ≥ VT: if it is the case, we reject the partial 

word, i.e., the block of words with Lk as leader is 

rejected for not having an optimal word and we also 

reject all the partial words of order K the succeed Lk. 

[2].LB (Lk) < VT: if it is so, we check whether Lk is 

feasible. If it is feasible, we proceed to consider a 

partial word a order which represents a sub-block of 

words represented by Lk. If Lk is not feasible, we 

consider the next partial word of order k, by 

considering another letter in kth position which 

succeeds ak. If all the partial words of order k are 

exhausted, then we consider the next partial word of 

order (k-1). 

Data Guided Lexi-Search Algorithm 
Introducing a preprocessing technique as 

done in lexi search algorithms of Pandit and Srinivas 

and Ahmed are not worthwhile for our algorithm. Of 

course, exchanging row with corresponding column 

in the cost matrix depending on their variances would 

have been worthwhile, but keeping record of track of 

the nodes would be more expensive. It is then 

observed that for some instances, solving transposed 

cost matrix takes lesser time with a same tour value 

than the original matrix. Now, the question is that 

under what condition the transposed matrix is to be 

considered instead of the given matrix. After 

studying many statistics of the cost matrix we come 

to the conclusion that when the variances (standard 

deviations) of rows are more than those of columns, 

our lexi search algorithm takes less computational 

time. Hence, we introduce two preprocessing of the 

modified cost matrix before applying our simple lexi 

search algorithm as follows: 

Let αi, βi be the standard deviations of ith row and 

jthcolumn of the modified cost matrix C, for all   i = 

1,2, …,n. 

 Process 1: count how many time (αi <  βi), 

for all 1 ≤ i ≤ n. If this count is greater than n, then 

the                transposed modified cost matrix is 

considered. 

 Process 2: Let α = 


n

i

i

1

  and β =


n

j

j

1

 . 

Next, we check whether (α < β). If yes, then the 

transposed   

modified cost matrix is considered. 

The above preprocessing is incorporated in data-

guided lexi search algorithm. The data-guided lexi 

search algorithm replaces the steps 1 and 12 of the 

algorithm described in feasibility criterion of Lexi-

search algorithm. 

Step 0: Remove “bias” of the given cost matrix. 

Preprocess the modified cost matrix as described 

above and construct the “alphabet table” based on the 

modified cost matrix. Set “best solution value” as 

large as possible. Since “node 1” is the starting node, 

we start our computation from 1st row of the 

“alphabet table”. Initialize “partial tour value” = 0, r 

= 1 and go to Step 2.  

Step 11. Current word gives the optimal tour 

sequence with respect to the cost matrix used for 

solution. If the transposed matrix is used for solution, 

then take reverse of the tour sequence as the optimal 

tour sequence with respect to the original cost matrix 

and then stop. 

Computational results & Conclusion 
The lexi-search algorithm (LSA) and data-

guided lexi-search algorithm (DGLSA) have been 

encoded in C on a Pentium IV personal computer 

with speed 3GHz and 448 MB RAM under MS 

windows XP operating system. We have selected 

TSPLIB [22] instances of size from 17 to 55. We 

report the solutions that are obtained within three 

hours on the machine as well as total computational 

times (TotTime) in seconds. We also report 

percentage of error of the solutions obtained by the 

algorithms. The percentage of error is given by the 

formula                             Error(%) = (BestSol-
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OptSol)/OptSol×100%, where BestSol denotes the 

best/optimal solution obtained by the algorithms and 

OptSol denotes the optimal solution reported in 

TSPLIB. 

Table 1: Results by data-guided lexi-search algorithm 

using Process 1 and Process 2 

Insta

nce 

 

Opt

Sol 

Bes

tSol 

Process 1 Bes

tSol 

Process 2 

Err

or 

(%

) 

TotT

ime 

Err

or 

(%

) 

TotT

ime 

br17 39 39 0.0

0 

75.2

3 

39 0.0

0 

75.2

3 

ftv3

3 

128

6 

128

6 

0.0

0 

644.

22 

128

6 

0.0

0 

611.

26 

ftv3

5 

147

3 

147

3 

0.0

0 

354.

12 

147

3 

0.0

0 

345.

88 

ftv3

8 

153

0 

154

8 

0.0

0 

1649

.29 

154

8 

0.0

0 

1649

.29 

p43 562

0 

563

1 

0.1

4 

1356

6.10 

563

1 

0.1

4 

1286

6.10 

ftv4

4 

161

3 

161

3 

0.0

0 

1132

3.24 

161

3 

0.0

0 

1289

9.28 

ftv4

7 

177

6 

181

1 

2.1

3 

1356

6.28 

181

1 

2.1

3 

1286

6.10 

ry48

p 

144

20 

153

44 

10.

21 

1356

6.28 

153

44 

10.

21 

1322

2.11 

ftv5

3 

690

5 

792

5 

15.

11 

1322

8.01 

792

5 

15.

11 

1322

2.01 

ftv5

5 

160

8 

171

0 

5.3

5 

1356

6.28 

171

0 

5.3

5 

1356

1.10 

Ave

rage 

  3.2

9 

8153

.90 

 3.2

9 

8131

.83 

 

Table 1 presents the comparative study of DGLSA 

using two different preprocessing methods, Process 1 

and Process 2. It is seen from the table that the 

solutions obtained by both methods are same. Hence, 

we consider DGLSA using Process 2 for comparison 

with other algorithms. 

 

Table 2 shows that, DGLSA takes time that is less 

than or equal to the time taken by LSA for all 

instances. The table shows that, on average 

computational time, LSA, and DGLSA find a 

solution within at most 39%, and 30% of the total 

computational time, respectively. That is, LSA, and 

DGLSA spend at least 61%, and 70% of total 

computational time on proving the solutions. 

Therefore, for these TSPLIB instances, LSA spends a 

relatively large amount of time on finding solution 

compared to DGLSA. 

 

Table 2: Results by different algorithms on ten 

TSPLIB instances 

Insta

nce 

 

Opt

Sol 

LSA DGLSA 

Bes

tSol 

Err

or 

(%

) 

TotT

ime 

Bes

tSol 

Err

or 

(%

) 

TotT

ime 

br17 39 39 0.0

0 

75.2

3 

39 0.0

0 

75.2

3 

ftv3

3 

128

6 

128

6 

0.1

2 

611.

24 

128

6 

0.0

0 

611.

26 

ftv3

5 

147

3 

147

3 

1.0

2 

345.

12 

147

3 

0.0

0 

345.

88 

ftv3

8 

153

0 

154

8 

1.2

3 

1649

.29 

154

8 

0.0

0 

1649

.29 

p43 562

0 

563

1 

1.3

5 

1356

6.10 

563

1 

0.1

4 

1286

6.10 

ftv4

4 

161

3 

161

3 

1.3

6 

1132

3.24 

161

3 

0.0

0 

1289

9.28 

ftv4

7 

177

6 

181

1 

3.3

7 

1356

6.28 

181

1 

2.1

3 

1286

6.10 

ry48

p 

144

20 

153

44 

10.

21 

1356

6.28 

153

44 

10.

21 

1322

2.11 
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ftv5

3 

690

5 

792

5 

15.

11 

1322

8.01 

792

5 

15.

11 

1322

2.01 

ftv5

5 

160

8 

171

0 

5.3

5 

1356

6.28 

171

0 

5.3

5 

1356

1.10 

Ave

rage 

  3.9

1 

8153

.90 

 3.2

9 

8131

.83 

 

 

On the other hand, DGLSA requires largest amount 

of time on proving the solutions, and hence, a large 

number of sub problems are thrown. On the basis of 

computational time also, LSA is found to be better, 

and DGLSA is found to be the best one. There is 

good improvement of DGLSA over LSA for the 

instances in terms of solution quality and 

computational time. So, our goal is achieved very 

well. We presented simple and data-guided lexi-

search algorithms that use path representation method 

for representing a tour for the benchmark asymmetric 

traveling salesman problem to obtain exact optimal 

solution to the problem.  It is found that our data-

guided algorithm is very effective for these instances. 

For random instances also, the data-guided lexi-

search algorithm is found to be effective, and the 

algorithm is not much sensitive to the changes in the 

range of the uniform distribution. 

Though we have proposed a data-guided module of 

the lexi-search algorithm, still for some instances it 

takes more times than the simple lexi-search 

algorithm, and it is applicable only for the 

asymmetric instances. So a closer look at the 

structure of the instances and then developing a more 

sophisticated data-guided module may apply on 

symmetric instances, and may further reduce the 

computational time and provide better solutions for 

large instances. Another direction of the research is to 

propose a better lower bound technique which may 

reduce the solution space to be searched, and hence 

reduce the computational time. 

 

Acknowledgements 
The author whishes to acknowledge 

Prof.S.N.N Pandit (late) and acknowledge Prof. 

Sundara Murthy.M for their continuous help and 

valuble suggenstions and moral support to 

strengthern of the paper.The author is also thankful to 

the anonymous honorable reviewer for his valuable 

comments and suggestions. 

 

 

References 
[1] C.P.Ravi kumar, “Solving Large-scale travelling 

salesperson problems on parallel machines”, 

Microprocessors and Microsystems,  vol. 16, no. 3, 

pp. 149-158, 1992. 

[2] R.G. Bland and D.F.Shallcross, “Large traveling 

salesman problems arising from experiments in x-ray  

crystallography: a preliminary report on 

computation”,  Operations Research Letters, vol. 8, 

no.3, pp. 125-128,  1989. 

 

[3] C. H. Papadimitriou and K. Steglitz, 

Combinatorial Optimization: Algorithms and 

Complexity, Prentice Hall of India Private Limited, 

New Delhi, India, 1997. 

 

[4] R. Jonker and T. Volgenant, “Transforming 

asymmetric into symmetric traveling salesman 

problems,” Operations Research Letter 2, vol. 2, pp. 

161–163, 1983. 

 

[5] D. Naddef, “Polyhedral theory and branch-and-

cut-algorithms for the symmetric TSP,” in The 

Traveling Salesman Problem and Its Variations, G. 

Gutin and A. P. Punnen, Eds., vol. 12 of 

Computational Optimization, pp. 29–116, Kluwer 

Academic Publishers, Dodrecht, The Netherlands, 

2002. 

 

[6] M. Fischetti, A. Lodi, and P. Toth, “Exact 

methods for the asymmetric traveling salesman 

problem,” in The Traveling Salesman Problem and 

Its Variations, G. Gutin and A. P. Punnen, Eds., vol. 

12 of Computational Optimization, pp. 169–205, 

Kluwer Academic Publishers, Dodrecht, The 

Netherlands, 2002. 

 

[7] Z. H. Ahmed, “A lexisearch algorithm for the 

bottleneck traveling salesman problem,” 

International Journal of Computer Science and 

Security, vol. 3, no. 6, pp. 569–577, 2010. 

 

[8] S. N. N. Pandit, “The loading problem,”   

Operations Research, vol. 10, no. 5, pp. 639–646, 

1962.  

 

[9] S. N. N. Pandit and K. Srinivas, “A lexisearch 

algorithm for the traveling salesman problem,” in 

Proceedings of the IEEE International Joint 

Conference on Neural Networks, vol. 3, pp. 2521–

2527, November 1991. 

 

[10] Sobhan Babu.K., Chandra Kala.K, Purushotam. 

S, , Sundara Murthy.M., “A New Approach for 

http://www.ijesrt.com/


[Babu, 4(4): April, 2015]   ISSN: 2277-9655 

  Scientific Journal Impact Factor: 3.449 

   (ISRA), Impact Factor: 2.114 
   

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [64] 
 

variant multi Assignment Problem” International 

Jouranal on Computer Science and Engineering, 

Vol.2, No.5, 2010, pp.1634-1641. 

 

[11] H. D. Sherali, S. C. Sarin, and Pei-F Tsai, “A 

class of lifted path and flow-based formulations for 

the asymmetric traveling salesman problem with and 

without precedence constraints,” Discrete 

Optimization, vol. 3, no. 1, pp. 20–32, 2006. 

 

[12] G. B. Dantzig, D. R. Fulkerson, and S. M. 

Johnson, “Solution of a large-scale traveling-

salesman problem,”  Operational Research Society 

Journal, vol. 2, pp. 393–410, 1954. 

 

[13] S. C. Sarin, H. D. Sherali, and A. Bhootra, “New 

tighter polynomial length formulations for the 

asymmetric traveling salesman problem with and 

without precedence constraints,” Operations 

Research Letters, vol. 33, no. 1, pp. 62–70, 2005. 

 

[14] T. O¨ ncan, I¨. K. Altinel, and G. Laporte, “A 

comparative analysis of several asymmetric traveling 

salesman problem formulations,” Computers & 

Operations Research, vol. 36, no. 3, pp. 637–654, 

2009. 

 

[15] E. Balas and P. Toth, “Branch and bound 

methods,” in The Traveling Salesman Problem, E. L. 

Lawler, J. K. Lenstra, A. H .G. Rinnooy Kan et al., 

Eds., Wiley Series in Discrete Mathematics & 

Optimization, pp. 361–401, JohnWiley & Sons, 

Chichester, UK, 1985. 

 

[16] G. Carpaneto, M. Dell’Amico, and P. Toth, 

“Exact solution of large-scale, asymmetric traveling 

salesman problems,” Association for Computing 

Machinery. Transactions on Mathematical Software, 

vol. 21, no. 4, pp. 394–409, 1995. 

 

[17] S. N. N. Pandit, “An Intelligent approach to 

travelling salesman problem,” Symposium in 

Operations Research,  Khragpur: Indian Institute of 

Technology,  1964. 

 

[18] Z. H. Ahmed, “A Data-Guided Lexisearch 

Algorithm for the Asymmetric Traveling Salesman  

Problem,”  Mathematical Problems in Engineering, 

Vol.2011, doi:10.1155/2011/750968.  

 

[19] Z. H. Ahmed and S. N. N. Pandit, “The 

travelling salesman problem with precedence 

constraints,” Opsearch,  vol. 38, no. 3, pp. 299–318, 

2001. 

[20] M. S. Murthy, Some Combinatorial Search 

Problems (A Pattern Recognition Approach), Ph.D. 

thesis, Kakatiya  University, Warangal, India, 1979. 

[21] K. Srinivas, Data Guided Algorithms in 

Optimization and Pattern Recognition, Ph.D. thesis, 

University Of Hyderabad, Hyderabad, India, 1989 

 

[22]TSPLIB,http://www2.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/. 

[23] D. S. Johnson, Machine comparison site, 

http://public.research.att.com/~dsj/chtsp/speeds.html. 

 

 

 

http://www.ijesrt.com/
http://www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

